

Current Sensor

Model Number:

CM4A 1000 H00

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Features

- Closed loop (compensated) current sensor using the Hall effect
- ♦ Galvanic separation between primary and secondary
- ♦ Insulating plastic case recognized according to UL 94-V0
- ♦ Very good linearity
- ♦ High accuracy
- ♦ Very low offset drift over temperature
- ♦ No insertion loss
- ♦ Standards:

■ EN50178: 1997 ■ IEC 61010-1: 2000 ■ UL 508: 2010

Applications

- ♦ AC variable speed and servo motor drives
- ♦ Uninterruptible Power Supplies (UPS)
- Static converters for DC motor drives
- ♦ Switch Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Battery management
- Wind energy inverter
- ♦ Test and detection devices

Safety

This sensor must be used according to IEC61010-1.

This sensor must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock!

When operating the sensor, certain parts of the module can carry hazardous voltage (e.g., Primary busbar, power supply). Ignore this warning can lead to injury and/or cause serious damage. This sensor is a built-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Absolute maximum ratings(not operating)

Parameter	Symbol	Unit	Value	
Supply voltage	Vc	V	± 25.2	
Primary conductor temperature	<i>T</i> _B	$^{\circ}$	100	
ESD rating, Human Body Model (HBM)	V esd	kV	4	

X Stresses above these ratings may cause permanent damage.

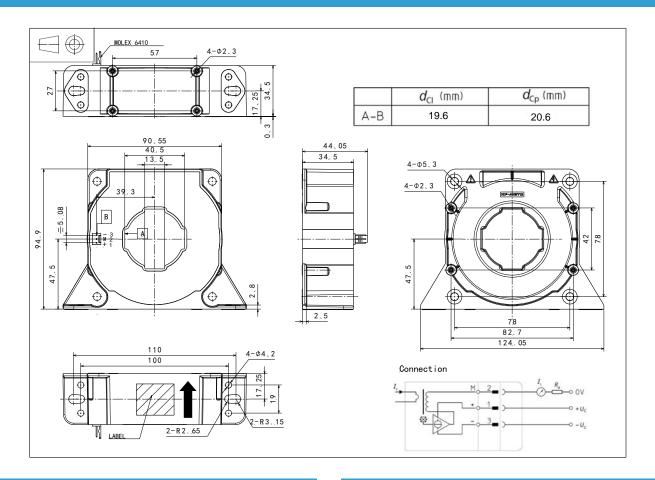
Environmental and mechanical characteristic

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	<i>T</i> A	$^{\circ}$	-40		85	
Ambient storge temperature	<i>T</i> s	$^{\circ}$	-40		90	
Mass	m	g		615		
Standards	EN 50178, IEC 61010-1, UL 508C					

Insulation coordination

Parameter	Symbol	Unit	Value	Comment
Rms voltage for AC insulation test, @50 Hz, 1 min	V _d	kV	3.8	
Impulse withstand voltage 1.2/50µs	₩	kV	16	
Clearance (pri sec.)	d c₁	mm	19.6	
Creepage distance (pri sec.)	d _{Cp}	mm	20.6	
Plastic case	ı	ı	UL94-V0	
Comparative tracking index	CTI	PLC	3	
Application example	1	1	1000V CAT III PD2	Reinforced insulation,according to EN 50178, EN 61010-1
Application example	-	-	2000V CAT III PD2	Basic insulation,according to EN 50178, EN61010-1

X Exposure to absolute maximum ratings for extended periods may degrade reliability.


Electrical data

XWith T_A = 25°C, V_C = ±24V, R_M = 20 Ω ,unless otherwise noted.

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal rms current	<i>I</i> _{PN}	Α	-1000		1000	
Primary current, measuring range	/ PM	Α	-2100		2100	
Measuring resistance	R_{M}	Ω	0		16	@±15V, 85℃, ±1000A
			0		4	@±15V, 85℃, ±1200A
			10		54	@±24V, 85°C, ±1000A
			10		1	@±24V, 85°C, ±2100A
Secondary nominal rms current	<i>I</i> sn	mA	-200		200	
Secondary coil resistance		0			39	@ 25 ℃
occordary con resistance	<i>R</i> s	Ω			51	@ 85℃
Secondary current, measuring range	<i>I</i> s	mA	-420		420	
Number of secondary turns	N s	-		5000		
Theoretical sensitivity	\mathcal{G}_{th}	mA/A		0.2		
Supply voltage	V c	٧	±15		±24	@ ±5%
Current consumption	/ c	mA		28 + /s		
Offset current	<i>l</i> ₀	mA	-0.2		0.2	
Thermal drift of offset current	/ от	mA	-0.6		0.6	@ -40℃~85℃
Residual current@ /P=0 after /PN	/ ом	mA	-0.1		0.1	
Sensitivity error	$\mathcal{E}_{ extsf{G}}$	%	-0.2		0.2	Exclusive of I _{OE}
Linearity error 0I _{PN}	\mathcal{E}_{L}	% of Æ _N	-0.1		0.1	Exclusive of I _{OE}
Accuracy@ I _{PN}	Χ	% of IPN	-0.3		0.3	Exclusive of I _{OE}
Response time@ 90% of I _{PN}	<i>t</i> r	μs		0.5	1	
Frequency bandwidth(-3dB)	BW	kHz	150			

Dimensions (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

♦ General tolerance

Primary hole

♦ Transduce vertical fastening

Recommended fastening torque

Recommended fastening torque

♦ Connection of secondary

Transduce horizontal fastening

4pc Φ5.3 mm through hole 4pc M5 metal screw

Molex 6410

±0.5mm

Ф38тт

40 mm x 13 mm

1.2 N·m (±10%)

 $2pc \Phi 5.3 \text{ mm through hole}$ 2pc M5 metal screw

4pc Φ4.2 mm through hole 4pc M4 metal screw 0.9 N•m (±10%)

Recommended fastening torque 1.2 N•m (±10%)

Remarks

- \Leftrightarrow $I_{\rm S}$ and $I_{\rm P}$ are in the same direction, when $I_{\rm P}$ flows in the direction of arrow.
- → Temperature of primary conductor should not exceed 100°C.
- ♦ Dynamic performances (di/dt and response time) arebest with a single bar compleetely filling the primary hole.

This is a standard model. For different applications(measurement, secondary connections...), please contact CHIPSENSE.